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1. Introduction

Prior to Voyager 2 encounter, Neptune has two known satellites: large icy Triton and distant

irregular Nereid. Triton is located where one usually finds regular satellites (close satellites in

circular equatorial orbits, which have the same origin as their parent planets) around other planets,

and moves nearly in a circle, but its orbit is retrograde and significantly tilted, which is common

only among irregular satellites (small distant satellites in tilted and elongated orbits, which are

thought to be captured minor planets). Triton’s unique orbital properties imply a capture origin

followed by an orbital evolution history featuring tidal damping and circularization (McKinnon

1984; Goldreich et al. 1989; Agnor and Hamilton 2005). Although different capture mechanisms

have been proposed, Triton’s post-captured orbit is remote and extremely eccentric in all scenarios.

During its post-captured orbital circularization, Triton forced any of Neptune’s original regular

satellites into collision and self-disruption, and a debris disk formed. Most of the debris was ejected

out of the system, or crashed onto Neptune or Triton, while some materials close to Neptune

survived (Hamilton et al. 2005) to form a new generation of satellites. Banfield and Murray (1992)

estimated the reforming timescale, which was in the order of tens of years. However, those survivors

were unknown until the fly-by of Voyager 2 in 1989 (Smith et al. 1989).

Voyager 2 discovered six small satellites and several rings, and confirmed the ring arcs seen

by occultation years earlier, all of which are closely around Neptune (within five Neptune radii).

Karkoschka (2003) reexamined the Voyager 2 images later, and derived more accurate sizes and

shapes of the new satellites. Proteus, the largest one, is only about 400 kilometers in diameter, which

is smaller than even the smallest regular satellite of Uranus, Miranda. Owen et al. (1991) calculated

their orbital elements, and Jacobson and Owen (2004) provided more precise measurements based

on the data from Voyager 2, Hubble Space Telescope and ground-based observations. Both of these

analyzes show that all the small moons are in direct near-circular orbits with moderate inclinations.

Their parameters are listed in Table 1.

The short satellite formation timescale in the debris disk implies that satellites can form

around the end of Triton’s migration and circularization. However, Smith et al. (1989) calculated

the cometary bombardment rate in that region and pointed out that only the outermost Proteus

is able to survive disruptive collisions over the age of the Solar System. The innermost Naiad
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probably could not last much longer than 2 to 2.5 billion years. For those four satellites between

them, calculations based on the current small body flux show that they have reasonable surviving

probabilities, but they would be destroyed during an early period of heavy bombardment. Hence

it is very likely that all the six small satellites formed with the massive Triton in or close to its

current tilted retrograde orbit. In this unique situation, the orbits of the small satellites might

evolve differently from other moon systems. Reconstructing their orbital evolution history will

enable us to place constraints on the tidal dissipation factor Q (see Goldreich and Soter 1966) of

both Neptune and its satellites. Furthermore, the initial formation location of Proteus can constrain

parameters of Triton’s post-captured orbit.

The current inclinations of the six small satellites, albeit small, are clearly non-zero (Table 1).

However, the debris disk, in which they formed, damps very quickly into a thin plane similar to

Saturn’s rings. For satellites formed out of this thin disk, their inclinations should be less than

0.001◦. The observed values are much larger and imply that something excited these inclinations

in the past. In this paper, we investigate the possibility of the resonance passage as an excitation

mechanism. The satellites migrate (i.e., their semimajor axes change) due to tides, and pass through

orbital resonances configurations, which kicks their inclinations up sharply. The same procedure can

also explain the eccentricities of Larissa and Proteus, which, unlike other satellites, are significantly

greater than zero. We provide some background information on the theory of tidal evolution and

resonance passage in the next two sections. In section 5 we present our numerical results for different

mean motion resonances between the two outermost small satellites and immediate implications.

In the last section, we discuss our constraints on Triton’s capture and Neptune’s Q.

2. Tidal Evolution

Tidal friction between satellites and their mother planet determines their orbital evolution

over a long time span (Darwin 1880; Burns 1977). The physical way in which tides affect orbits

can be found in (Goldreich and Soter 1966; Burns 1977; Murray and Dermott 1999). The small

satellites raise tides on Neptune (planetary tides), which then drive them to migrate either inwards

or outwards, depending on their mean motion. If a satellite orbits faster than the rotation of

Neptune, it moves towards the planet, or its semimajor axis decreases over time; otherwise, it

moves away from the planet, and its orbit enlarges. The distance, at which a satellite’s orbital

period is the same as the spin period of its planet, is usually referred as synchronous radius (Rsyn).

The orbit at that distance is called synchronous orbit or co-rotation orbit. A satellite at synchronous

orbit always faces the same side of its planet, and aligns with the tidal bulge it raises on the planet.

For a satellite reasonably away from the synchronous orbit, its migration rate due to planetary

tides is (Murray and Dermott 1999):
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Here m, a, and n are the mass, semimajor axis. and mean motion of the satellite, respectively. mN

is Neptune’s mass. The Love number k2N measures the internal rigidity of Neptune. QN is the

tidal dissipation factor of Neptune, which parametrizes the energy dissipation rate. QN generally

depends on the amplitude and frequency of tides (Goldreich and Soter 1966), but this dependence

is very weak for low frequency tides with small amplitudes. In this paper we assume constant Q’s

for both Neptune and its satellites. The plus sign in the above equation is for satellites inside Rsyn,

and minus sign is for those outside Rsyn.

For the Neptunian system, the synchronous orbit lies between Larissa and Proteus (c.f. Fig. 1),

which means Proteus’s orbit has expanded while orbits of all other satellites have shrunk. The big

gap between the orbits of Proteus and Larissa provides an evidence for the different migration

directions. The migration time scales for those satellites are difficult to estimate because the

uncertainty of QN (Goldreich and Soter 1966). Banfield and Murray (1992) estimated QN to be

between 12,000 and 330,000. Based on this rough estimation, we found that the semimajor axes of

those small satellites had changed in the order of RN over the age of the Solar System. Although

Triton is outside the synchronous orbit, it always moves towards Neptune due to its retrograde

orbit. Being much further away from Neptune, it migrates a lot slower than the small satellites,

with a timescale ∼ 1012 years. We can safely ignore its migration.

Tides not only change the size of an orbit, but also affect other orbital elements. Jeffreys (1961)

showed that the eccentricity usually grows thanks to planetary tides. However, in the Neptunian

system and most other moon systems, tides on a satellite raised by its planet damp the satellite’s

eccentricity and circularize its orbit. This damping effect dominates the eccentricity growth due

to planetary tides (Goldreich 1963). The eccentricity damping rate can be found in Murray and

Dermott (1999):
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Here R is the radius of the satellite, Q is the tidal quality factor of the satellite, and µ̃ is the ratio

between the elastic to gravitational forces in the satellite tides – another measurement of internal

strength.

Based on reasonable assumptions for QT and µ̃T , Goldreich and Soter (1966) estimated the

circularization timescale for Triton, which is in the order of 100 million years. This is much shorter

than the age of the Solar System, which means Triton has been tidally circularized in the very

beginning and spend the majority of its time in current circular orbit. The eccentricity damping

timescales for the small satellites is longer because their small sizes, but they are still much less

than 1 billion years. The eccentricities of the four inner small moons are all consistent with zero.

However, the orbits of Larissa and Proteus are considerably eccentric, which indicates a very recent

excitation.

The inclination also changes due to tides because rotation carries the tidal bulge in and out of
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orbital plane, but for a satellite with small tilt, the change rate is very slow (Burns 1977):

i̇

i
≈ −1

4
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a
. (3)

For the inner Neptunian satellites, their inclinations only increase or decrease by less than a tenth

of their values over the age of the Solar System. This means that any excitation of their orbital tilts

in the past is permanent. Their current inclinations carry fossil evidences of their orbital evolution

history.

3. Mean Motion Resonance Passage

A resonance happens when the frequency of a driven force matches the periodic behavior of

a dynamical system. When the orbits of two satellites are perturbed by their mutual gravity, an

orbit-orbit resonance, also known as a mean-motion resonance, occurs when commensurability exists

between the two satellites, or the ratio between the periods of the satellites is a rational number.

During a mean-motion resonance, the same orbital configuration repeats periodically, which means

the orbits are continuously perturbed in the same way, resulting in dramatic changes of the orbital

elements in a relatively short time. The resonance timescale is still much longer than the orbital

period, but a lot shorter than the secular perturbation timescale. Physical representation of mean

motion resonances can be found in Greenberg et al. (1972); Peale (1976); Greenberg (1977); Peale

(1986).

If the orbit does not precess, resonances occur when the two orbits are exactly commensurate,

and the satellite’s eccentricity and inclination are excited at the same moment. In reality, however,

both the oblateness of Neptune and secular perturbations from other satellites cause the orbit to

process, leading to resonance splitting similar to the Zeeman effect in which an atomic line splits

when the magnetic field is available. Instead of all the affected eccentricities and inclinations are

kicked up simultaneously, they change at different time. The degenerated mean-motion resonance is

replaced by a series of eccentricity-type, inclination-type, and combined-type resonances, depending

on which orbital elements they affect.

An angular parameter is associated with any single resonance, known as resonant angle or

resonant argument, which is in the form:

φ = (p+ q)λ2 − p λ1 + j1 Ω1 + j2 Ω2 + j3$1 + j4$2. (4)

Here λ1, Ω1, $1 and n2, Ω2, $2 are the orbital mean longitudes, longitudes of ascending nodes,

and longitudes of pericenters of the two satellites, respectively. The are two constraints for any

valid resonant argument: the sum of all the integer coefficients (p + q, −p, and ji) must be zero;

and the sum of j1 and j2 must be an even number, or nodes must appear in pairs. When two

satellites are out of resonance, φ circulates through a full 360◦ over time. But when they are in

resonance, φ is constant, and Eq. (4) implies (p+ q)n1 − pn2 ≈ 0 since nodes and pericenters vary
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much slower than mean longitudes. Although the two satellites are not exactly commensurate, they

are still very close to. The integer q is the order of the resonance, which is relevant to the resonant

strength. Higher order means weaker resonance. q determines how many nodal and pericenter

parameters may appear in the resonant argument, while each of those parameters is corresponding

to multiplying a e or sin i in the resonant strength. Since e’s and sini’s are small quantities, the

more they are, the weaker the resonance is.

The rates of all six parameter in Eq. (4) depend on the semimajor axes of the satellites. When

satellites tidally migrate, their resonant state changes (see Greenberg et al. 1972; Greenberg 1973;

Peale 1986; Hamilton and Burns 1993; Hamilton 1994; Murray and Dermott 1999). When the

two orbits diverge from each other and pass through a resonance, the affected orbital elements

are subject to sharp changes, which can be either positive or negative. The signs and magnitudes

of these kicks depend on not only the resonant strength, but also the initial phase when the two

step into the resonance. However, they are predictable if the two diverge very slowly so that the

variation of orbital elements are in adiabatic limit before and after resonance encounter. In this

case the kicks on eccentricities and inclinations are always positive, and the amounts of kicks can

be obtained analytically by a Hamiltonian analysis (see Peale 1986; Murray and Dermott 1999). In

contrast, when the two orbits pass through a resonance when they approach each other, the two can

be captured into resonant state and remain in resonance unless perturbations from other objects

or other nearby resonances force them out. During a resonance capture, the affected eccentricities

and/or inclinations keep growing and the orbits may be forced to fairly eccentric and tilted.

In this paper we focus on the resonance encounters between Proteus and Larissa. Since they are

on different side of the synchronous orbit and migrate away from each other, only resonant kicks can

happen. However, we will see in a later section that, in cases when two nearby resonances overlap,

it is possible that they can be temporarily captured into some resonances. The tidal migration rates

of Proteus and Larissa are slow enough so that most of the first- and second-order resonances are

in adiabatic limit. We cannot predict the amount of kicks from higher order resonances, but they

are usually weaker by an order of magnitude. We are still able to estimate how much inclination

the satellites can obtain through each resonance passage with fair precision. Based on Eq. (1),

we calculate the possible first- and second- order resonances between the two in the past (Fig. 2).

Because Eq. (1) is over-simplified in the vicinity of synchronous orbit, the left end of the plot is less

accurate. In fact, it is very likely that Larissa formed well inside the synchronous orbit and moved

much slower than predicted by Eq. (1) in early stages. The actual evolutionary timescale depends

on Neptune’s Q, which we will constrain through later discussions. We assumed a mass ratio of

0.1 between Larissa and Proteus based on the sizes given in Karkoschka (2003). As the resonant

locations get closer with increasing p, a lot more resonances may fit in for a slightly different mass

ratio. However, we will see that the strong interaction between first order eccentricity resonances

for big p forces the orbital elements to behave chaotically and wipes out all previous resonance

signatures.
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4. Numerical Techniques

Our simulations are carried out with HNDrag in the HNBody package (Rauch and Hamilton

2005). HNBody is a general purpose hierarchical N-body integrator, which implements both sym-

plectic and high order Burlisch-Stoer and Runge-Kutta algorithms. HNDrag expands the original

HNBody codes, which enable us to add any artificial drag forces to the satellites, which can simulate

a wide range of external perturbations. Since our interest lies in the long-term orbital evolution and

we do not care about the location of the satellites in their orbits, we use the symplectic integrator

for better time-wise performance. The integration stepsize is chosen so that there are at least 20

steps during each orbital period. In each simulation, the system consists of Neptune, Triton, Pro-

teus and Larissa. We fix the semimajor axis of Larissa, and migrate Proteus outwards across each

individual resonances. The drag force we use simply drive Proteus away from Neptune in a steady

rate. In reality, the diverging speed or the two satellites might accelerate or decelerate. But since

most of the strong resonances are in adiabatic limit, the kicks on the eccentricities and inclinations

are independent of this acceleration as long as they diverge slow enough. We ignore the Sun in our

simulations since the Solar tidal perturbation is much smaller than Triton’s at Neptune vicinity.

The output of HNDrag can be either osculating orbital elements or Cartesian positions and

velocities. The osculating elements are a set of projected Kepler orbital elements for each instant,

assuming no extra perturbations. However, perturbations from both Neptune’s oblateness and

Triton exist, which cause the osculating elements of orbits to vary with orbital mean motions,

resulting artificial oscillations in the outputs. We can get ride of this artificial effect by using

geometric elements, which define the real shape of the orbit. Following (Greenberg 1981), we take

the positions and velocities outputs from HNDrag and convert them to geometric orbital elements

with a separate program called cj2. cj2 only correct for perturbation from Neptune’s oblateness,

which by far contribute for most of the artificial oscillation. Small oscillations still show up in our

plots of orbital elements due to other perturbations, but their magnitudes are too small to hide

any interesting changes.

5. Resonances between Proteus and Larissa

As Proteus and Larissa tidally migrates to their current orbits, they have passed through a

series of mean-motion resonances (c.f. Fig. 2). The satellites gain eccentricity and inclination

through each resonant passage. Although the eccentricities obtained through earlier passages have

damped away, the acquired inclinations are well preserved until today. In this section, we discuss

our simulations for each of the individual resonances.
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5.1. 5:3 Resonances

Although it is neither the earliest nor the latest of the series of resonant passages Proteus

and Larissa have gone through, the 5:3 mean resonance is the simplest in that there are not any

distracting first- and third-order resonances occurring in the same region. The next strongest

resonances coinciding are of fourth-order (10:6), which are too weak to even show up on most of

our plots.

5.1.1. Second-order Mean Motion Resonances without Triton

Before looking at the change of orbital elements in the real system, we examine the 5:3 res-

onances in an ordinary system with only two satellites, Fig. 6 shows the orbital semimajor axes,

eccentricities, and inclinations of the two satellites when they diverge through their 5:3 mean mo-

tion resonance without Triton’s presence. During the outwards migration of Proteus, the orbital

elements of the two jumps at six locations, corresponding to three eccentricity-type and three

inclination-type second-order resonances which are split out from the mean-motion resonance due

to orbital precession. Both the two types of resonances are equally-spaced, which can be explained

by looking through the resonant arguments. When the two satellites are in resonance, the resonant

argument satisfies:

φ̇ = 0. (5)

For the three inclination resonances, which we name as Ri2P
, RiP iL , and Ri2L

from the left to the

right in Fig. 6, the corresponding resonant arguments are:

φi2P
= 5λP1 − 3λL − 2ΩP1, (6)

φiP iL = 5λP2 − 3λL − ΩL − ΩP2, (7)

φi2L
= 5λP3 − 3λL − 2ΩL, (8)

where the subscripts 1, 2, 3 denotes the 3 different location of Proteus. Eq. (5) requires that,

5nP1 − 3nL − 2Ω̇P1 = 0, (9)

5nP2 − 3nL − Ω̇L − Ω̇P2 = 0, (10)

5nP3 − 3nL − 2Ω̇L = 0. (11)

Since the 3 resonance locations are very close, we can safely neglect the difference between the

nodal precession rates. Eqs. (9-11) imply

nP1 − nP2 ≈ nP2 − nP3, (12)

which, for close resonance locations, is equivalent to

aP2 − aP1 ≈ aP3 − aP2. (13)
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Furthermore, since the migration rate of Proteus is nearly constant over a short period of time,

these locations are equally spaced in time as well(Fig. 6).

The resonance strength depends on the strength of perturbation and the instant values of the

orbital elements. Since the mass of Proteus is much larger than that of Larissa, the perturbation

on Larissa is much stronger than on Proteus. Hence the inclinations and eccentricities of Larissa

changes much more than Proteus. The strengths of Ri2P
, RiP iL , and Ri2L

depend on i2P , iP iL, and i2L,

respectively. Because iP > iL in the simulation, the Ri2P
kick on iP is stronger than the RiP iL kick,

and the RiP iL kick on iL is stronger than the Ri2L
kick. The detailed analysis of these resonances

can be found in Murray and Dermott (1999).

5.1.2. Laplacian Plane and Free Inclination

When we add Triton into the system, this symmetric pattern changes. Although the eccentric-

ity kicks are about the same, the inclination resonance pattern varies dramatically. But before we

analyze the details of the new pattern, we find a problem with the resonant angle. Usually, when

the two satellites pass through a resonance, the corresponding resonant argument has a station-

ary value at the exact resonant location. However, the resonant angles of the three second-order

inclination-type resonances, as defined in Eqs. (6-8), keep circulating in full 360◦. We figure out

that the presence of Triton has revised the resonant arguments. We need to redefine some of the

nodal elements to re-validate the definition of the resonant angles in the unique Neptune-Triton

system.

In a two-body system consisting of Neptune and Triton, if Neptune were perfectly spherical,

the two would have circulated around each other in Keplerian orbits. The rotational angular

momentum of Neptune (LN ) and the orbital angular momentum of Triton (LT ) are both constants

with fixed directions in space. In reality, however, the oblateness of Neptune resulting from spin

deformation cause Triton’s orbital plane to precess. To the second order in the ratio between

the radius of Neptune (RN ) and the semimajor axis of Triton (aT ), the nodal precession rate is

determined by (Danby 1988)

Ω̇T = −nT
3

2
J2

(
RN
aT

)2

≡ goblT , (14)

where J2 is a dimensionless constant which quantifies the planet’s oblateness. For Neptune and

Triton, J2 = 0.003411, and Ω̇T is about 600 years which is sufficiently longer than Triton’s orbital

period (5.88 days).

Although LT is no longer a constant vector due to the precession of Triton’s orbital plane, the

system still conserves its total angular momentum Ltot = LN + LT , and the plane perpendicular to

Ltot is fixed in space, which makes it a natural reference plane for orbital elements measurement.

This plane is usually referred as the invariable plane. In the Neptune-Triton system, it is tilted

ε = 0.5064◦ from Neptune’s equatorial plane (Jacobson and Owen 2004). Neptune’s equatorial
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plane is always locked with Triton’s orbital plane, and the two precess together along the invariable

plane. Here we ignore the spin of Triton and orbits of the other satellites since their contributions

are negligible.

Small inner Neptunian satellites (m � mT � mN ) experience not only perturbation from

Neptune, which cause their orbits to precess with a rate gobl similar to goblT in Eq. (14), but also

secular perturbation from Triton. To second order in small eccentricities and inclinations, the

semimajor axes of small satellites do not change and the equations governing the changes of ec-

centricities and pericenters are completely separable from those determining how inclinations and

nodes vary. Because Triton’s eccentricity is close to zero, it has minimal effect on the eccentricities

and pericenters of small moons. But the inclinations of those moons are perturbed a lot due to

Triton’s large tilt.

Murray and Dermott (1999) show that an external perturber, Triton, causes the node of a

small inner satellite to precess with frequency

gsec = −1

4
n
mT

mN
α2b

(1)
3/2(α). (15)

Here α = a
aT

is the semimajor axes ratio of the satellite and Triton, and b
(1)
3/2(α) is one of the

Laplace coefficients. Combined with the perturbations from Neptune’s oblateness, the disturbing

function for the small satellite can be written as

R = na2

{
1

2
(gsec + gobl)i2 − gsec(π − iT )i cos(Ω− ΩT − π)

}
, (16)

where the extra π symbols are due to Triton’s retrograde orbit. We solve the Lagrange’s planetary

equation with the above disturbing function, and get

i sin Ω = ifr sin[(gsec + gobl)t+ δ ] + iLap sin(ΩLap), (17)

i cos Ω = ifr cos[(gsec + gobl)t+ δ ] + iLap cos(ΩLap), (18)

where the free inclination ifr and phase angle δ are constants determined by initial states. The

angles iLap and ΩLap define the local Laplacian plane of the satellite as illustrated in Fig. 3a.

iLap =
gsec

gsec + gobl
(π − iT ), (19)

and

ΩLap = ΩT + π, (20)

both of which are independent of the initial inclination and node of the satellite. Once the satellite’s

semimajor axis is given, its local Laplacian plane is determined, which precess together with Triton’s

orbit and Neptune’s equator. iLap and ΩLap are usually called forced inclination and node.

Fig. 3b illustrates the solutions (17-18) in a phase diagram of i sin Ω versus i cos Ω. The

magnitudes of vectors
−−→
OO′ and

−−→
O′A are the forced and free inclinations, respectively. The direction
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of
−−→
OO′ gives the forced node ΩLap, and the direction of

−−→
O′A measured from

−−→
OO′ is Ωfr. The vector

sum of the two represents the inclination i and longitude of ascending node Ω of the small satellite

relative to the invariable plane and an arbitrary reference direction. Measuring the direction of−−→
O′A from the reference direction, we get the angle

Ω̃ = ΩLap + Ωfr, (21)

which we redefine as the longitude of ascending node of the satellite. Fig. 3a shows its physical

meaning: a bent angle occupying two different plane which is similar to the definition of the

longitude of pericenter $.

The free inclination can be looked on as inclination of the satellite measured from its local

Laplacian plane, and the free node is measured from the node of the Laplacian plane. Fig. 4

shows the difference between i,Ω and ifr, Ωfr. Measured relative to the Laplacian plane, ifr is a

constant over time and Ωfr regress constantly. However, measured relative to the invariable plane,

i oscillates around iLap and Ω, in addition to regress, progresses at the same rate as the Laplacian

plane. Besides regress along the Laplacian plane, the orbit of the satellite has be forced to progress

with it as well.

Another way of thinking about satellite’s local Laplacian plane is that, suppose we are putting

satellites into the Neptune-Triton system. If a satellite starts right in its local Laplacian plane, or

its initial inclination is iLap, it always stay in the plane and its inclination stays constant relative

to any reference plane. However, if it starts out of its local Laplacian plane, i.e. with a non-zero

free inclination, it precesses along the plane and its inclination measured from any other plane

oscillates.

Since iLap depends on the semimajor axis of a satellite, satellites at different distances from

Neptune will have different local Laplacian plane. When Triton is circularized and forced the

original satellites of Neptune in to debris, those debris damps into their local Laplacian plane very

quickly (in the order of several years Banfield and Murray 1992). The disk is very thin, similar to

Saturn’s rings, and is warped along the Laplacian plane as shown in Fig. 5. The whole warped disk

precesses as a unit along with Triton’s orbit and Neptune’s equator.

With the new defination of the longitude of the ascending node Ω̃, resonant arguments defines

in Eqs. () hold in the Neptune-Triton system. The resonances kick free inclinations up or down

instead of the inclinations relative to invariable plane. The resonance strengths also directly depend

on free inclinations.

5.1.3. Three-body Resonances

Now we look into details of the 5:3 resonance passage of Proteus and Larissa with Triton in the

system. Fig. 7 shows the free inclinations of Larissa and Proteus. In addition to the 3 second-order

resonance kicks, two strong kicks, RiLiT and RiP iT show up. The space between RiLiT and RiP iL is
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the same as that between RiP iT and Ri2P
. Because the resonance arguments of RiP iL and Ri2P

are

φiP iL = 5λP − 3λL − Ω̃P − Ω̃L,

φi2P
= 5λP − 3λL − 2Ω̃P , (22)

and because RiLiT only affects Larissa and RiP iT only affects Proteus, we assume that the resonance

arguments for them are somehow similar to

φiLiT = 5λP − 3λL − Ω̃L,

φiP iT = 5λP − 3λL − Ω̃P . (23)

However, there are two problems with these arguments. First, the sum of the coefficients of either

is not zero; second, the nodes do not appear in pairs. We need another node parameter in either

of the resonance arguments. The missing part turns out to be the node of the satellites’ local

Laplacian plane, and the resonances can be interpreted as resonances between the satellites and

their local Laplacian planes, which always precess with Triton. The real resonance arguments write

as

φiLiT = 5λP − 3λL − Ω̃L − ΩLap,

φiP iT = 5λP − 3λL − Ω̃P − ΩLap. (24)

Since the precession of Laplacian plane is much slower than that of the orbits of the satellites,

the adding terms do not shift the resonance location much. Fig. 7 also shows the 2 corresponding

resonant arguments. When the two satellites are close to RiL and RiP , the corresponding φiL or

φiP do not circulating whole 360◦ any longer. Instead, they begin to oscillate around some certain

values, i.e. 180◦ for Larissa and 0◦ for Proteus. Physically, when the two satellites are far away

from resonance, their orbits precess along their local Laplacian planes all around due to Neptune’s

oblateness and secular perturbations among the satellites, and their orbital planes shifts up and

down crossing them. When they migrate close to the resonance, the orbit of the affected satellite

turns around and starts to regress relative to the node of the Laplacian plane at some point. After

regressing through the equilibrium point and to the other end of the libration, it turns around and

begins to precess again. The libration magnitude decreases as the two satellites getting closer to

the resonance location, at which point the orbit of the affected satellite is completely locked up

with the Laplacian plane, and precess together with Triton until tides bring them out of resonance.

Once leaving resonance, the orbits begin to circulate again.

Since local Laplacian plane is only a mathematical way of describing the orbital system, these

new resonances are better interpreted as 3-body resonances among Larissa, Proteus, and Triton.

However, it is different from all other 3-body resonances that have been studied (e.g. Laplace

resonance among Jupiter’s satellites: Io, Europa, and Ganymede) in that Triton’s longitude does

not appear in the resonance arguments. However, Triton’s node is involved in both arguments

(since ΩLap = ΩT + π), which implies its inclination should be kicked at resonance. In reality,

because Triton is much more massive than Proteus and Larissa, it is hardly perturbed by them.
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For the 3 2-body resonances, the corresponding inclination kicks are weaker compared to the

previous case in which Triton is not included. In both of the simulations, the initial inclinations

of both satellites relative to Neptune’s equator are the same, which are the tilts of the satellites’

local Laplacian plane. However, for the later case, the resonance strength depends directly on the

free inclinations relative to the local Laplacian planes, which are tiny. Hence the kicks are not as

strong.

Although the 2-body resonances are weak for small free inclinations, Proteus and Larissa are

still able to gain inclinations because the 2 new strong 3-body resonances. To measure the amount of

inclination kicks through the 5:3 passage, we need to make sure that Proteus migrates slowly enough

in our simulation so that the system is in adiabatic limit. We have done a series of simulations

with the same initial configuration but different Proteus migration rate and measured the amount

of jumps resulting from the 6 major resonance kicks. The results are shown in Fig. 8. The plots

imply that if Proteus migrates at a rate 5 × 10−13RN/day or slower, the 2 3-body kicks are in

adiabatic limit, the RiP iL kicks and Ri2L
kick are near the limit, while the Ri2P

kick on Proteus may

be quite away from the limit. However, the later is much weaker that others, and it only has small

effect on the final inclination of Proteus. The slowest migration rate we used in our simulations is

5×10−13RN/day, at which Proteus migrates about one Neptune radius over the age of the system.

Measured from Fig. 7, Proteus obtains a free inclination of 0.012◦ and Larissa’s tilt is kicked up by

0.068◦, both of which are less than half of their current free tilts.

Apparently, a single mean-motion passage is not powerful enough to kick the inclinations of

Proteus and Larissa to their current values, even with the strong 3-body resonances. However,

since inclination damps very slow and resonances in adiabatic limits always kick inclinations up,

multiple passages can do the job. Before we look through other recent mean motion resonances

between Proteus and Larissa, we need to determine how the kicks from different resonances add

up. Studies (references?) show that for 2-body resonances, a larger initial tilt always results a

greater kick. However, for the three-body resonance, the amount of kick scale with the initial free

inclination in a different way. Fig. 9 shows how the RiLiT kick magnitude changes with different

initial iL’s. In contrast to the two-body case, the kick magnitude decreases with increasing initial

free inclination. For large iL0, ∆iL scales as

∆iL ∝ i
− 1

2
L0 .

In two-body resonances, the resonance kick scales up with initial inclination because the res-

onance strength increases with inclination, and absolute inclinations relative to the equator of

Neptune do not effect the relative distance of the two satellites much, although their mutual in-

clination matters. In 3-body case, large free inclination also means the small satellites are further

away from Triton, which results a decrease in the resonance strength.
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5.2. 2:1 Resonances

The most recent resonance encounter between Proteus and Larissa is their 2:1 resonance,

which is only about 600km outside Larissa’s orbit or 900km inside Proteus’s orbit. Their excited

eccentricities have yet been tidally damped away (Table 1). Unlike the 5:3 resonance, in which the

next higher-order resonances is fourth-order (10:6), the 2:1 resonance coincides with resonances of

any single order, i.e., 4:2 (second-order), 6:3 (third-order), 8:4 (fourth-order) etc. With all those

different order resonances on top of each other, the changes of orbital elements during the pass of

this resonance, shown in Fig. 10, is very complicated. The eccentricity resonances include two strong

first-order ones and a bunch of much weaker higher-order ones, among which the second-order ReLeP
is the strongest, but the magnitudes of kicks are still tiny. The inclination resonances are much

more complicated than those in the 5:3 case. The two second-order three-body resonances are still

the strongest among all the inclination jumps. Couple of new fairly strong third-order three-body

resonances show up, which contribute a significant amount towards the total inclination gains.

5.2.1. Eccentricity Resonances and Q’s of the Satellites

The current eccentricities of Larissa and Proteus are 0.002046 and 0.000258, respectively,

which have been tidally damping away over the last hundred million years after they are excited

through the 2:1 mean motion resonance of the two satellites. Since tidal migration is determined

by planetary tides (Eq. 1) and eccentricity damping is mostly accounted by satellite tides (Eq. 2),

the ratio between satellite Q and QN can be estimated based on satellite’s migration distance and

the change of its eccentricity :

Q

QN
=

21

4

k2N

µ̃

(mN

m

)2
(
R

RN

)5 ∣∣∣∣
d ln a

d ln e

∣∣∣∣ . (25)

For the tidal migration after the 2:1 resonances, we know that the initial values of semimajor

axes must satisfy aP /aL = 2
2
3 , they evolve following Eq. (1), and the two satellites migrate to

their current orbits at the same time. We calculated the changes of the semimajor axes of the two

satellites based on these constraints: Larissa has migrated 0.016RN towards Neptune, while Proteus

has moved 0.011RN outward. We obtained the initial eccentricities of the two satellites right after

their resonance by numerical simulations. Since the eccentricity resonances are first-order, they

are much stronger and our simulations show that the two strong eccentricity kicks in Fig. 10 are

well within the adiabatic limit. The higher-order kicks are too weak to have any significant effect.

Hence eccentricities measured after the kicks, which are 0.011 for Larissa and 0.0016 for Proteus,

are close to their actual values when they left the resonant configuration.

With these measures of change of a’s and e’s, the Q of Larissa and Proteus can be computed

with respect to QN :

QL = 0.029QN , QP = 0.014QN . (26)
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5.2.2. Inclination Resonances

5.3. 3:2 Resonances

6. Discussion

Constraints on Neptune’s Q and the formation location of Larissa and Proteus by which

resonances have to or must not happen. Constraints on Q’s of Larissa and Proteus.

Further work: High inclination of Naiad; Ring arc shepherds.
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Table 1: Inner Neptunian satellites

Name R̄ (km) e (×10−3) iLap (◦) ifr (◦)
Naiad 33 .362± .301 0.5118 4.7455± 0.0317

Thalassa 41 .215± .231 0.5130 0.2094± 0.0212

Despina 75 .224± .176 0.5149 0.0636± 0.0144

Galatea 88 .037± .090 0.5262 0.0615± 0.0113

Larissa 97 1.393± .079 0.5545 0.2046± 0.0088

Proteus 210 .531± .086 1.0546 0.0258± 0.0069

References. — Sizes of the small satellites are from Karkoschka (2003); Orbital elements are from Jacobson and

Owen (2004).

Fig. 1.— Semimajor axes of the small inner Neptunian satellites in RN . The two arrows show

the tidal migrating direction of the satellites. The dashed line indicates the synchronous orbit of

Neptune.
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Fig. 2.— Possible past first- and second-order mean motion resonances between Proteus and

Larissa. We integrate Eq. (1) backwards until Larissa reaches the synchronous orbit, which denotes

the upper bound of its formation location. The mass ratio of Larissa and Proteus, estimated based

on their size, is 0.1 in the calculation. The vertical dotted lines indicate locations of resonances.

Fig. 3.— Definition of free orbital elements of a small satellite. iLap, ΩLap: inclination and longitude

of ascending node of the local Laplacian plane; ifr, Ωfr: free inclination and node of the satellite’s

orbit measured relative to its local Laplacian plane; i, Ω: inclination and node of the satellite’s

orbit measured relative the invariable plane. The longitude of ascending node of the orbit is defined

as the bend angle Ω̃ = ΩLap + Ωfr. a: the physical representation of the planes and elements. b:

phase diagram showing the solutions (17-18).
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Fig. 4.— Inclination and node of a satellite at a = 8RN measured relative to the invariable plane

(i, Ω) and the local Laplacian plane (ifr, Ωfr).
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Fig. 5.— Laplacian plane of Neptune-Triton system. Plot shows a side view of the invariable

plane, Neptunian equatorial plane, Triton’s orbital plane, and the local Laplacian plane of a small

satellite. iT and ε are the inclinations of Triton’s orbit and Neptune’s equator, respectively. Note

that they are measured towards different sides of the invariable plane due to the fact that Triton’s

orbit is retrograde. iLap is the inclination of its local Laplacian plane. The thin curve defines the

shape of the warped Laplacian plane for a set of satellites with different semimajor axes, or a debris

disk inside Triton’s orbit. The whole Laplacian plane precess with Triton’s orbit and Neptune’s

equator along the invariable plane.
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Fig. 6.— Proteus and Larissa diverge through their 5:3 mean motion resonance; Triton is excluded

from the system. These plots show a typical second order mean motion resonance passage.
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Fig. 7.— Proteus and Larissa diverge through their 5:3 mean motion resonance.
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Fig. 8.— The kicks of inclinations of Proteus and Larissa from the 5 major resonances versus

Proteus’s migration rate when it diverges through their 5:3 resonances. Top: kicks of Larissa.

circle: RiL ; triangle: RiP iL ; square: Ri2L
. Bottom: kicks of Proteus. circle: RiP ; triangle: RiP iL ;

square: Ri2P
.
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Fig. 9.— Magnitude of RiL kick on Larissa (∆iL) versus its pre-kicked free inclination (iL0).

Triangle: kick magnitudes from different simulations with various initial free inclination of Larissa;

solid line: fitted curve in which ∆iL ∝ i
− 1

2
L0 .

Fig. 10.— Proteus and Larissa diverge through their 2:1 mean motion resonance.


